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In this paper we use shock capturing spectral methods to simulate
compressible flows in the presence of shack waves. Three applications
are considered. The first is an interaction of a one-dimensional shock
with an entropy wave. The second case deals with interactions between
shock wave and an entropy wave in two space dimensions and the third
case is two-dimensional shock—vortex interactions. The first two
applications are found in the study of turbulence in high speed flow.
The last application is a key element in understanding the acoustic
dynamics in aercacoustic and in design of supersenic jet in
aegrodynamics, The purpose of this study is to show the feasibility of
simulating shocked flow with spectral methods. The numerical
methods involved are the Chebyshev and Fourier collocation methods.
The Euler equations of gas dynamics is discretized by pseudospectral
{collocation) methods in space and a nonlinearly stable third-order
Runge-Kutta method in time. The fluxes are evaluated pointwise
directly and not by the cell-averaging technigue. A significant reduc-
tion in CPU time and storage usage are achieved by incorporating
several well-established numerical technigues, such as grid transforma-
tion and filtering, into the spectral algorithm. The results of this study
indicate that spectral method is well suited not only for smooth
problems but also for those with discontinuity.  © 1994 Academic Press, Inc.

1. INTRODUCTION

In the numerical simulation of turbulence, high order
methods are essential in capturing the fine scale and delicate
physical phenomenon. Spectral methods, with their mini-
mum dispersive and dissipative errors and high order of
accuracy, have been applied successfully to such problems
in which the solutions are smooth and well behaved at any
finite time. However, those methods, owing to their global
representation of the data, develop global oscillations due
to the Gibbs phenomenon when applied to problems
with discontinuities. These oscillations often destroy the
accuracy of the spectral methods and cause nonlinear
instability. Applications of spectral methods to inviscid
compressible flow (Euler equations} are much less
developed, due to the shock formation by the nonlinearity
of the equations, than incompressible fluid flows.

Previous studies of spectral methods applied to shock
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wave calculations indicate that the Gibbs phenomenon can
be overcome. Gottlieb and Tadmor [9] proved that, for
linear problems, the moments of the numerical solution
computed by spectral methods are spectrally accurate.
Moreover, Lax [16] had argued that more information
about the solution is contained in high resolution schemes,
even for nonlinear problems. The latest result by Tadmor
[27] shows the convergence of the spectral methods
for nonlinear scalar equations. Numerous numerical
experiments in shock simulation using spectral approxima-
tion (see, for example, [2, 3, 5, 28 ]) had also demonstrated
the validity of these theoretical results. Most of those
numerical experiments, with the exception of [2], were
limited to shocks composed only by piecewise linear func-
tions without any fine structure. In [2], good results were
obtained to shock—entropy wave interaction by using the
Chebyshev collocation method and a cell-averaging techni-
que for the numerical fluxes, which is a smoother quantity
than the pointwise one. Furthermore, spectral accuracy
away from discontinuity was demonstrated. However, these
results were one-dimensional. The only two-dimensional
problem considered in [2] was a scalar one.

In this paper, we apply spectral methods to some practi-
cal two-dimensional fluid flow problems with large and fine
flow structures along with the shock. For multi-dimensional
nonlinear system of partial differential equations, the cell
averaging fechnique developed in [2] is difficult to imple-
ment efficiently. Instead, we use the pointwise formulation
of Chebyshev and Fourier collocation methods. Several
numerical techniques are incorporated in the algorithm to
allow a significant reduction of computer resources in terms
of CPU time and storage usage. One of those numerical
techniques, in particular, worth mentioning is a grid-
mapping technique [13] developed by Kosloff and
Tal-Ezer. By redistributing the Chebyshev collocation
points to an almost uniformly spaced grid, it allows fewer
grid points and a larger time step to be taken in this study.
The shock is captured very well and small-scale structures
are well resolved. We emphasize that in this paper we do not
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use the any fancy nonlinear fixes, e.g., the “essentially non-
oscillatory” spectral method developed in [3]. Instead, we
keep the spectral scheme stable by a weak exponential filter
at every time step. At the final time step, the osciltatory solu-
tion is post-processed to recover an almost oscillation-free
solution. As shown in [ 1], oscillatory solution computed by
the spectral scheme contains high order information about
strength and location of the shock,

Moreover, the author would like to stress that the
numerical algorithm presented in this study is an oscillatory
spectral shock-capturing method. It should not be confused
with a spectral shock- fitting method in which the shock is
fitted as a computational boundary. The advantage of
shock fitting is that the underlining solution is smooth,
hence great accuracy can be achieved with fewer numbers of
basis function. The main disadvantage is that the shock-
fitting method is limited for problems with well-defined
shock fronts [13, 237.

Other classes of numerical methods most commonly used
in the study of shock wave calculation are finite-difference
techniques, most notably, the “essentially non-oscillatory”
schemes (ENQO) [10]. To minimize numerical oscillations,
ENO schemes biased the stencil locally in computing
derivatives to avoid differencing across the discontinuity,
For comparison purposes, solutions computed by the
spectral methods are compared with the one computed' by
the ENO third-order finite-difference scheme [24-26].

This paper is organized as follows. In Section 2 we
describe the nuts and bolts of the numerical techniques used
in this research. Sections 3.1, 3.2, and 3.3 present the results
of the simulations in one-dimensional shock-entropy wave
interaction, two-dimensional shock-entropy wave inter-
action, and two-dimensional shock—vortex interaction,
respectively. Concluding remarks are given at the end of the
Section 3.3.

2. NUMERICAL METHODS

Consider the 2D Euler equations for gas dynamics in
strong conservation form

OW OF G

— — 2.1
at+6x+6y 0, (2.1)

where the vector of unknown is W= [ p, m, », E]" and the
fluxes are given by

2 T
F:[m,"i+P,@, (E+P)@] ,
P p p

2 T
G:[n,ff,”—w, (E+P)5],
p’p p

where p, m, n, and E are, respectively, the density, mass flux
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in x, mass flux in vy, and total energy per unit volume. It is
coupled with the equation of state for ideal gas, P=(y - 1)
(E—1(m?+n?){p) and the ratio of specific heats y = 1.4.

The physical domain has a finite length in x direction and
either bounded or unbounded, depending on the physical
problem being considered, in the y direction. The physical
domain is mapped into a rectangular computational
domain (&, %), with —1 <& n<1 or 0<y<2nin the case
of a periodic boundary in y. The transformation of the
infinite domain into finite domain is accomplished by
the tangent mapping, ie, y=« tan{nn/2) («x=02-04
typically).

The system (2.1) is discretized in the computational
domain (£, 1) by the Chebyshev collocation (pseudospec-
tral) method in & and either Chebyshev or Fourier colloca-
tion method in #. These two collocation methods are well
documented. The reader is referred to [4, 8, 30] et al for a
detailed discussion of these methods. We now discuss in
detail some of the non-standard numerical technigues
employed in this algorithm:

1. TItis well known that the differentiation of a function
using Chebyshev and Fourier collocation methods can be
evaluated either by fast Fourier transform (FFT) or by
matrix—vector multiplication technique. In the matrix—vec-
tor multiplication technique used, we applied the even—odd
function decomposition idea advocated by A. Solomonoff
[227, the computational time can be reduced by as much as
35%. We will briefly describe this new method.

In evaluating the derivative of a given function f by
Chebyshev collocation method (for example), the value of f
at the grid point ¢, is factored into f,=e¢;+ 0, i=0, .., N,
where ¢ and o are the even and odd parts of f, respectively.
The entries of the Chebyshev differentiation matrix (see
[30]) satisfy the relation d, ;= —dy _; »_ ;. Assuming N is
odd,

(N—1)2
ej=—ey_;= Z (di,j+di-N—f')ej (2.2)
i=0
(W— 172
oj=0y_;= Y (d,—d.n_) o, (2.3)
=0

where the superscript ' denotes differentiation. Finally, f; =
e/+o;and fiy_,=—e/+o/for i=0,.., (N—1)/2. With a
slight modification, the same idea is also applicable for even
N (ie. odd number of grid points). The total count of
operations of this algorithm reduced to O(N?%/2} as com-
pared to O(N?) for the normal matrix-vector multiplication
method. Moreover, the total storage requirement for the
even and odd differentiation matrices are N /2 as oppose to
NZ for the full differentiation matrices. Similar algorithm
can be applied to both the Chebyshev and Fourier colloca-
tion methods.
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2. A third-order TVD (total variation diminishing})
Runge-Kutta method [24] is used to march the Euler
equations in time, It has the form of

W' =W" — 41 L{W")
Wi=1(3W"+ W' —4r L(W?)
W = LW L OW? 2 A1 L(W?),

where L. is the spatial operator for the fluxes. Under suitable
CFL <1, this method is TVD-stable if the Euler forward
version of the spatial operator L is TVD. It shouid be noted,
however, that L {s not TVD under our formulation.

It is well known that, for the Chebyshev collocation
method, the CFL condition for stability restricts the time
step 41 < Const - N2, where N is the number of collocation
points taken | 9]. To alleviate the severe restriction imposed
on the time step A4¢, we transformed the Chebyshev colloca-
tion pomnts {Z;=cos(nj/N), j=0,.., N} by the mapping
£1s],

sin ~"(f¢)

=g (24)

By taking § = 0.999, the new grid points %(¢,)’s are almost
evenly spaced! This transformation serves two important
purpases, First, larger (approx. 10 times) CFL numbers can
be used while maintaining stability of the spectral scheme.
One can imagine that the Const in the CFL condition is
multiplied by a large coefficient, namely the metric tensor of
the mapping. Second, the resolution around the center of
the physical domain, where most of the relevant physical
phenomenon is located, improves dramaticaily. Hence,
fewer collocation points are needed, which in turn further
relaxes the CFL condition. Without this mapping tech-
nique, serious difficulties will be encountered in terms of
computing resources for a fixed resolution requirement. By
the way, one can take CFI, as big as three, in practice, for
this algorithm.

3. Despite the fact that the CFL condition on 4f is
strictly enforced, oscillations gencrated by the Gibbs
phenomenon grow in time and the scheme becomes
unstable eventually. In order to control the nonlinear
growth of oscillation, and exponential filter [30]

g, = e WHNT 0|kl <N, {2.5)
is used to modify the Fourier and/or Chebyshev coeflicient
of index k. More precisely, suppose the function f{x) allows
an expansion in terms of a Chebyshev polynomial of
degree N,

N

fix)= 2 a; Th(x).

k=0
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The filtered function f becomes

fxy= 3 0,0, Tix).

k=0

This procedure can be impiemented efficiently either by the
fast Fourier algorithm or by the matrix vector multiplica-
tion technique.

Our experience indicated that the filter should be applied
to the derivatives of the fluxes F, G, and solution W at every
time step. However, it is not necessary to appiy fiitering of
W at the first and second stages of the TVD Runge-Kutta
scheme. In most cases, a weak filter of order y=16 and
o= 32.23619 is sufficient. For strong shock interaction with
strong structures, for example, vortex with strong circula-
tion, a filter of order 12, along with larger N, should be used.
In practice, once the instability subsided, one can revert to
a weaker filter to continue the simulation. The general
gurdeline regarding the order of filter 1s that one should vse
a lite filtering as possible but just strong enough to
stabilize the calculation.

Theoretically, the exponential filter recovers solution
with spectral accuracy away from the discontinuity only for
the Fourter method. Numerically, the same result seems to
hold true also for the Chebyshev method. The optimal filter,
developed by Vandeven [29], which linked the order of
filtering to the number of collocation points {(or modes),
offers an attractive alternative for the exponential filter used
here, Other filtering functions, such as sharpened raised
cosine etc., can also be considered for the substitution of the
exponential filter. Research in the effect of filtering on the
accuracy of the Chebyshev method is an important subject
and will be studied in the future.

4. Tt is well known that great care should be exercised in
the application of boundary conditions when spectral
methods are used to solve the hyperbolic system of equa-
tions. The characteristic treatment based on the eigenvalues
of the linearized one-dimensional Euler equations of gas
dynamics is used at each boundary points in the x direction.
Readers are referred to [6] for details. If the domain in p is
unbounded, the boundary points are assigned values as
computed by the spectral scheme. Naturally, periodic
boundary conditions are applied if the problem being study
is periodic in y as in Example 2 of next section.

5. Once the final time has been reached, the computed
oscillatory solution will be processed through the
reconstruction step in order to recover a non-oscillatory
solution. The underiying theory behind this procedure is
simply that, for linear problems, the moments of the
numerical solution computed by spectral methods are spec-
trally accurate [9]. Moreover, Lax [16] had argued that
more information about the solution is contained in high
resolution schemes, even for nonlinear problems. Under this
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framework, the problem of constructing a non-oscillatory
solution from the noisy solution becomes the problem of
signal processing. That is, how to reconstruct a meaningful
resuit from the noisy data? Several techniques had been
developed with some success for both the Fourier and
Chebyshev methods [1, 3, 5]. The procedure used in this
research consisted of two steps {see [ 1] for details).

1. The location x, and the strength 4 of the discon-
tinuity are determined from the moments of the oscillatory
solution fy{x) by a least square fit of f,(x) and a step
function Sy(x).

2 fulx)=F (fylx)—Sxp(x)) + S(x),

where % is the filtering (smoothing) operator, S is the
Heaviside function with jump 4 at x,, and §, is the
N-degree polynomial approximation of S.

This particular procedure is, by no means, optimal.
Research for a better reconstruction step is currently under
intensjve investigation. In the y direction, the solution is
simply smoothed by the exponential filter (y = 3, typically}.
No attempt had been made to reconstruct the solution in y.

6. Furthermore, with a simple change of the variables
x'=x-—uv.t, I'=1 we can switch the frame of reference to
the shock. In other words, the shock is almost fixed around
some given location in the physical domain while the
upstream disturbance is being passed through the shock. All
disturbances including the vortex can be introduced into the
flow field by modified boundary conditions. Within this
framework, it is possible to have a fixed finite physical
domain in x and an arbitrarily farge terminal time. This
technigue had been applied successfully to problems dis-
. cussed in next section along with the normal moving shock
cases. It is particulariy beneficial if physical phenomenon
is sought for large final time with a fixed resolution
requirement.

In this study we shall refer to this numerical scheme as the
spectral scheme.

3. NUMERICAL EXPERIMENTS

All the computations are performed on the Cray 2 super-
computer at Phillips Laboratory Supercomputer Center of
Kiriland Airforce Base. Depending on the problem size,
cither the FFT or matrix—vector multiplication technique is
used to compute derivatives of flux. In contrast to the ENO
technique, there is no decision making step required to
determine the smoothness of the derivatives by biasing the
stencils, at each grid point. This allows a thorough vec-
torization in those computationally intensive routines,
mainly, the Runge-Kutta step and the differentiation
routines. Furthermore, with the matrix-vector multiplica-
tion and the even-odd decomposition techniques men-
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tioned earlier, CPU time usage can be reduced by as much
as 35%.
3.1. One-Dimensional Shock—Entropy Wave Interaction

The first numerical problem we tested our algorithm is a
Mach 3 shock interacting with a entropy sine wave, i.e.,
initially,

(3.857143, 2.629369, 10.33333)

if x<--08

_ 1

{p,u, P) (1 +¢sin(knx), 0, 1) o0
if X>' *0.81

where =02 and k=5,

This problem had been used extensively in testing the
capability of many different numerical schemes, e.g., the
second-order MUSCL scheme [197], ENO [25], spectral
shock fitting [ 127, It is because the result of the interaction
of the shock with a small-amplitude low-frequency density
disturbance generates a large-amplitude high-frequency
entropy wave behind the shock. Low order schemes, in
general, had not been able to capture this fine structure.
Figures 1, 2; 3, 4; 5, 6 showed the solution of deansity belore
and after reconstruction with three different grid sizes
N =160, 256, 512, respectively, at time I = 1.80. The solid
line 1s the solution computed by the third-order ENC with
1200 points that we take as a converged solution.

In summary, despite the Gibbs phenomenon and non-
linearity of the Euler equations, the complicated flow field is
well resolved and the main shock remains sharp within one
grid cell, even with this naive approach of using spectral
methods. As evident in the solution, an additional smali
shock is formed behind the main shock. The Gibbs
phenomenon is quite obvious since we do not attempt to
locate this shock intentionally. Until a reliable algorithm for

5.0

!
|

20 [ | ——— EnNO 1200 pts.
» Speciral 160 pts.
1.0 |- v
-

1

}
a a - | | b . ]

5.0 25 0.0 25 50

FIG. 1. 1D shock-entropy wave interaction, N = 160, pre-processed

density solution.



SPECTRAL SHOCK CAPTURING TECHNIQUES 107
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e Spectral 160 pts.
er \/_\
0.0 L - . :
-5.0 25 0.0 25

FIG. 2. 1D shock—entropy wave interaciion, N = 160, post-processed

density solution.
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FIG. 3. 1D shock-entropy wave interaction, N =256, pre-processed

density solution.

20 ENO 1200 pts.
° Spectral 256 pts.
1.0 | \/\
00 " 1 - 1 ——— |
50 2.5 0.0 25

FIG. 4. 1D shock-entropy wave interaction, N = 256, post-processed

density solution.
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2o ENQ 1200 pts.

° Spectral 512 pts. b
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FIG. 5. 1D shock-entropy wave interaction, N =512, pre-processed
density solution.

locating multiple shocks is found, we will leave the solution
as computed with this algorithm,

3.2. Two-Dimensional Shock—Entropy Wave Interaction

We also used our spectral code to study the linear
ampilification factors of a small entropy disturbance, inter-
acting with a shock wave, as a function of the angle between
the shock and the disturbance. This problem arises from the
study of two-dimensional homogencous compressible
turbulence with shocks. Readers are referred to [31] for
detailed discussion of the modeling and analysis of this
problem. Spectral methods, by nature of their high accuracy
and negligible dispersive and dissipative errors, are ideally
suited to the numerical study of shock-free turbulence. Here
we would like to argue the applicability of the spectral
methods to the shock—turbulence interactions. In order to
investigate this issue, the small eddy turbulence is modeled

ENO 1200 pts.
e Spectral 512 pts.

2.0 —\

0.0 —— — | L I
-5.0 -2.5 0.0 25 50

FIG. 6. 1D shock-entropy wave interaction, N = 512, post-processed
density solution.
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by a small entropy wave in various angles relative to the
shock front. In this case, analytical linear analysis of the
entropy amplification factors provided a needed reference
for the accuracy of this simulation.

The initial conditions are defined as follows: The right
state of the shock is given as (p,, u,,v,, P.)=1{1,0,0,1).
With a given shock Mach number M _, the flow conditions
across the shock are evaluated via the Rankine—Hugoniot
Jjump conditions, i.e.,

P;=P,(2yﬂ2_(y_ )

(v+1}
, p( y+ 1) M? )
A ETY 7 ) )
(y— 1)y MZ+2 (3.2)
u.’=vs+(ur_vs)pr/p[
U;=O,
where
o, =/vP,/p), v,=Mc, ﬂ=u’c_u’

The solution of (3.2) is a pure shock moving to the right
with shock speed v,. For our problem the density p, in the
right state of the shock is multiplied by p,,

—{&/P,) cos(km{x cos G + ysin 8))
s

p.=¢ (3.3)

where g, k, and 8 are the amplitude, wave number, and
angle, relative to the normal shock, of the entropy perturba-
tion wave. The physical domainis —S<x<5and 0 y<
2/(k sin 8). Since the entropy wave is assumed to be periodic
in y, the Chebyshev and Fourier collocation methods are
used in the x and y directions, respectively.

In this simulation, the shock compresses the entropy
wave upstream into waves with higher wave number
downstream behind the shock. To analyze the process one
has to carry out a very long time integration. In most cases,
the shock would have moved beyond the physical domain.
There are two ways to remedy this situation. One way is to
enlarge the physical domain in such a way that the shock
remains inside the domain at the terminal time at the
expense of resolution for a given number of collocation
points, The second way is to use the change of variables
technique mentioned in last section to keep the shock in the
domain while the entropy wave is introduced through the
boundary conditions. Obviously, for the reasons stated
previously, the latter method is preferred in this simulation.

Table I gives the relative error (in percentage) of the com-
puted linear amplification factors of the entropy wave in
comparison with the analytical one given by linear theory.
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TABLEI

Relative Ervor of the Shock—Entropy Wave Interaction

Relative error

M, f g k NN, (percentage)
2 30 002 2 192, 32 35

3 10 002 2 192, 32 39

3 36 002 2 192, 32 44

3 56 002 2 192,32 53

5 i 002 2 256, 48 46

8 10 002 1 384,24 37

8 30 002 1 384,24 4.1

8 50 0.02 1 384, 24 51

The computed amplification factors are computed by
averaging the data in some region behind the discontinuity.
Hence the relative error shown here might vary depending
on the region where the data are used for averaging. The
results show a good agreement with parameters ranging
from a weak shock {M,=2) to a strong shock (A =38),
along with three different entropy waves angles 6 = 10°, 30°,
50°. The typical relative error computed by ENO ranges
between 4% and 5% [26].

3.3. Two-Dimensional Shock—Vortex Interaction

Finally, we computed the solution of the shock-vortex
interactions. A better understanding of the physics of the
shock—vortex interactions has many potential applications,
€.g., supersonic and subsonic jet nozzle design. Because of
the high non-linearity of the interaction, its physics is not
well understood, in general, with the exception of the linear
analysis done by Ribner and Moore [21, 18]. According to
their lingar analysis, an acoustic radiation pattern (sound
wave) will be generated by interaction. As stated in [17],
the sound wave will have a significant impact on the design
of jet engines that operate at supercritical nozzle pressure
ratios and helicopter blades designed for operating at super-
critical speeds. This problem had been investigated by many
researchers using various numerical techniques. The
second-order MacCormack finite difference method [20],
the upwind finite volume method [ 177, and spectral shock
fitting methods [11, 13, 14, 23] were used with various
degrees of success and limitation. In most of their research
in this application, the shock Mach number and vortex
strength used was relatively weak, compared with some of
the cases studied here. Moreover, most of the earlier works
done in this area using spectral methods are shock fitting
techniques. They gave better accuracy but cannot handle a
complicated solution like shock bifurcation. (Nore. The
recent paper “Uniform High Order Spectral Methods for
One and Two Dimensional Euler Equations” by Cai and
Shu had simulated this problem successfully, see ICASE
Report 91-26 for the details.)
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Following the definition of a vortex used in {137, the
tangential velocity profile of the vortex centered at
{x., ¥.)=1(1.1, 0) in polar coordinates is

Tr(rg —r %),
U(ry=< Ir(r= —r73),

0, r>F,

O0grsry<ry,

roErsr,

(3.4)

where r,=0.2 and r, = 1.0 unless specified otherwise. The
Chebyshev collocation method is used in both the x and the
» directions. This vortex is rotating in a counterclockwise
direction. Hence, the velocity field upstream of the shock
becomes

u=u,—U(r)sin

(3.5
v=uv,+ U(r)cos 8,

where §=tan~'((y — p. ) (x — x.)).

In order to test this algorithm to its full potential, we have
simulated this problem with various shock Mach numbers
M and vortex strengths 1

Figure 7 shows the pressure contour plot for shock Mach
number M,= 1235, I'=002. The physical domain is
0<x<3and —2< y<2 The Tal-Ezer mapping is used in
both directions with f=0.999. The grid size used is 128>
The shock is located at x=0.5 initially. Both the flux
derivatives and solution are filtered with a y = l6-order
exponential filter. The oscillatory solution ts post-processed
with y=3 at final time T=125 This computation
consumed a total CPU time of 112 s for 412 time steps.

By drawing an imaginary circular arc from the center of
the vortex, one can clearly see that an acoustic wavefront is
generated by the shock—vortex interaction. Ong should note
that the parameters used here is the same one used in {137,
except that the final termination time is not available in the
reference. In contrast to the single domain Chebyshev

FI1G. 7. 2D shock-vortex interaction, M, =1.25, =002,
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collocation result shown in [13], the flow field is well
resolved and qualitatively similar to the multidomain
calculation after post-processing.

In [17], similar problems were simulated by a second-
order upwind finite volume method with flux vector
splitting. Deformation and bifurcation of the shock were
observed when the vortex strength is “strong” relative to the
shock strength. Since different definitions of the vortex are
used in [17] and this study, no direct comparison will be
made in this case.

However, we observed a similar deformation and bifurca-
tion of the shock for the case of M_ =3 and I"=0.25 (as well
as in some other cases) as shown in the pressure contour
plot later. For this case, we used the y = 16-order filtering on
the flux derivatives and =14 for the solution. The final
solution is post-processed with y=23 at the final time
T=0.5. All other parameters are the same as the M, =1.25
case. The total CPU time used is 115 (556) s with 410 (520)
time steps for the grid 1287 (2567).

Before the reconstruction step, the raw pressure contour
data of grid size 128 are plotted in Fig. 8. One can see that
the solution is highly oscillatory and that the fine scale
features are badly contaminated by the numerical noise.
After post-processing, the numerical noise is removed from
the data by the reconstruction procedure. The pressure con-
tour plot (Fig. 9) shows a greatly improved solution almost
free of oscillation away from the shock front. Small scale
and deep gradient are recovered with good accuracy.
Figure 10 shows the pressure contour plot for grid size of
2562, The fine grid solution agrees very well with the coarse
one.

To verify the spectral result, we compare the results with
the one computed by the ENO third-order scheme using the
same parameters, except the grid size is 128 in x and 64 in
v. Figure 11 shows the pressure contour plot of ENO third-
order scheme [ Shu, private communication ]. In Fig. 12, the

1.5
10

05|

0ol

05

0.0

FIG. 8. 2D shock-vortex interaction, pressure contour, raw data,
M,=30,=025 N,=128, N =128
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FIG. 9. 2D shock-vortex interaction, pressure comtour, M,=3.0,
=025 N, =128 N, =128
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FIG. 10. 2D shock—vortex interaction, pressure contour, M, =30,
=025 N,.=256, N, =256.
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FIG. 11. 2D shock-vortex interaction, pressure contour, M,=13.0,

I'=025 N,=128, N, =64, computed by ENO third-order scheme.

. ENC 128x64
S0 . Spectral 1268x128
Spectral 256x256
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o
0.0 . E—— s L X
09 0.5 1.0 1.5 20 25

FIG. 12. 2D shock-vortex interaction, pressure contours plotted
together, M_=3.0, I'=0.25. Pressure distribution at y =0 for ENO and
spectral schemes.
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FIG. 14. 2D shock-vortex interaction pressure contour, M,=6.0,
=025 N, =256, N, =96.
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pressure data at y =0 is taken from these three cases and
plotted together, Except for the differences at the end of the
wavefront and the shock front, the spectral resuits agree
well with the ENO result.

The applicability of spectral shock calculation is not

limited to low shock Mach number and low vortex strength,
high Mach number flow up to Mach 6 and vortex strength
up to 0.5 have been simulated successfuily. The pressure
contour plot for cases of (M,=3, I'=0.5) and (M,=6,
[=0.25) are shown in Figs. 13 and 14, respectively.

The strong vortex strength (shock) case requires
y=12(8) and y=10(8) order of filtering on the flux
derivatives and solution respectively on a grid size of 2562,
The final terminal time is 7= 10.5(0.25). The total CPU time
used is 556 (567)s with 520 (510) time steps. All other
parameters are the same as for the case of M =3, =025

Since the main goal of this research is to study the
feasibility and efficiency of spectral shock capturing
methods in shock wave simulation with realistic physical
applications, the physical implications of the shock—vortex
interaction will not be discussed in this paper.

In conclusion, we have presented some encouraging
results of shock wave simulations using spectral methods.
Despite the results this research presented, many other
difficult numerical issues remain and it warrants further
detailed investigation, for example, a shock locator methed
that not only identifies the shock location and strength but
that also predicts correctly the number of shocks that exist
in a complicated flow solution.
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